
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 Threads

© 2023 Arthur Hoskey. All 
rights reserved.



Running a Java Thread

Two ways to run a Java thread:

 Runnable - Write a class that implements the 
Runnable interface and pass an instance of it to a 
Thread instance.

OR

 Derive Class From Thread - Write a class that 
inherits from the Thread class.

© 2023 Arthur Hoskey. All 
rights reserved.



Implementing Runnable

public class RunThreadImplementRunnable implements Runnable {

@Override

public void run() {

System.out.println("Thread - RunThreadImplementRunnable");

}

}

public class Driver {

public static void main(String[] args) {

System.out.println("Thread - Main Started");

Thread t = new Thread(new RunThreadImplementRunnable());

t.start();

System.out.println("Thread - Main Finished");

}

}

Override Runnable's

run method

Class implements the 

Runnable Interface

Call start to actually 

run the thread

Create an instance of the 

class that implements 

Runnable and pass it to the 

Thread constructor

© 2023 Arthur Hoskey. All 
rights reserved.



Extending Thread Class

public class RunThreadExtendThread extends Thread {

@Override

public void run() {

System.out.println("Thread - RunThreadExtendThread");

}

}

public class Driver {

public static void main(String[] args) {

System.out.println("Thread - Main Started");

RunThreadExtendThread threadExtend = new RunThreadExtendThread();

threadExtend.start();

System.out.println("Thread - Main Finished");

}

}

Override the run 

method

Class inherits 

from Thread

Call start to actually 

run in a thread

Create instance 

of the Thread 

derived class

© 2023 Arthur Hoskey. All 
rights reserved.



Anonymous Runnable

 Anonymous Runnable - The following code runs a thread using 
an anonymous instance of Runnable:

public static void main(String[] args) {

Thread t = new Thread(new Runnable() {

@Override

public void run() {

System.out.println("Thread - I love Java!");

}

});

t.start();

}

The thread constructor parameter is within 

the red parenthesis. An anonymous 

instance of Runnable is created and 

passed into the Thread constructor.

© 2023 Arthur Hoskey. All 
rights reserved.

The code in blue 

defines the anonymous 

Runnable instance.



Anonymous Runnable Using 
Lambda

 Lambda for Anonymous Runnable - The following code runs a 
lambda expression to define the anonymous instance of 
Runnable:

public static void main(String[] args) {

Thread t = new Thread( () -> {

System.out.println("Thread - I love Java with lambdas!");

});

t.start();

}

The thread constructor parameter 

is within the red parenthesis

© 2023 Arthur Hoskey. All 
rights reserved.

The lambda expression for the anonymous Runnable is in 

blue. Runnable is a functional interface (interface has only 

one method) so we can use a lambda expression to define it.



Pass Data to Thread

 Pass Data to Thread - You may need to pass data to a thread.

 Create a Runnable class having member variables to hold the parameters.

 Pass the parameters in using a constructor.

 The run method will have access to the member variables.

public class MyRunnableWithParameter implements Runnable {

private int data;

public MyRunnableWithParameter(int d) { data = d; }

@Override

public void run() {

System.out.printf("Passed in data is: %d\n", data);

}

}

Thread t = new Thread( new MyRunnableWithParameter(777) );

t.start();

run has access to the member 

variables which contain the data

© 2023 Arthur Hoskey. All 
rights reserved.

Pass the data in using the 

constructor

Create instance of MyRunnableWithParameter in 

main using the constructor to pass in data



Pass Data to Thread Using final 
Local Variables

 Pass Data to Thread Using final Variable

public static void main(String[] args) {

final String message = "I love threads with final variables!";

Thread t = new Thread( () -> {

System.out.println(message);

});

t.start();

}

The message variable is declared 

as final in the surrounding method 

so it can be used in the thread

© 2023 Arthur Hoskey. All 
rights reserved.



Join – Wait for another thread to 
finish

 join - If you need to wait for a thread to finish use the Thread 
class join method.

 When join is called the calling thread must wait for the thread 
instance that join is called on to finish before it can proceed.

public static void main(String[] args) {

Thread t = new Thread(new RunThreadImplementRunnable());

t.start();

try {

t.join();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

The current thread (main 

thread) will wait at this line 

until thread t finishes

© 2023 Arthur Hoskey. All 
rights reserved.



Sleep

 sleep – Stops the current executing thread for the given amount 
of time (in milliseconds). 

public static void main(String[] args) {

Thread t = new Thread( () -> {

System.out.println("Thread – Going to sleep");

Thread.sleep(1000);

System.out.println("Thread – Waking up!");

});

t.start();

}

Thread t will sleep 

for 1 second

(1000 milliseconds)

© 2023 Arthur Hoskey. All 
rights reserved.



Synchronized Method

 Synchronized Method – You can decorate a method with 
the synchronized keyword to create a critical section.

 Only one thread will be allowed to be running this method 
at any moment in time.

 For example, if thread A is running myMethod and thread B 
calls myMethod then thread B will have to wait until thread 
A finishes running it.

public synchronized void myMethod()

{

// code for critical section goes here…

}

© 2023 Arthur Hoskey. All 
rights reserved.

Decorate a method with the synchronized keyword 

to only allow one thread at a time to run it



Synchronized Block

 Synchronized Block- You can use a synchronized block to 
create a critical section.

 You must create an instance of Object that will serve as the 
lock for the synchronized block.

Object myLock = new Object();

public void myMethod()

{

// Other code not in critical section can go here…

synchronized(myLock)

{

// code for critical section goes here…

}

// Other code not in critical section can go here…

}

© 2023 Arthur Hoskey. All 
rights reserved.

The lock object instance 

must be accessible to all 

threads that will use it

Use the lock here



Higher-level Thread Usage

 Now on to higher-level ways to use threads….

© 2023 Arthur Hoskey. All 
rights reserved.



Car Service Example

 Every time a passenger wants a ride, a car must be started 
in the parking lot and driven to the pickup area.

 When the car is done being used it must be put in the 
parking lot and turned off.

 There is wasted time starting the car, driving it to the 
pickup area, driving the car back to the parking lot, and 
turning it off.

© 2023 Arthur Hoskey. All 
rights reserved.

Parking Lot Passenger 
Pickup Area

1. Start car 2. Drive car 

to pick area

4. Drive car back 

to parking lot 

after trip is done

3. Take 

passenger to 

destination and 

come back

5. Turn 

car off



Faster Car Service Example

 It would be faster if we could just leave the car running at 
the passenger pickup area.

 If we did this then we would not have to start the car, drive 
it to the pickup area, drive the car back to the parking lot, 
and turn it off.

© 2023 Arthur Hoskey. All 
rights reserved.

Parking Lot Passenger 
Pickup Area

1. Start car 2. Drive car 

to pick area

4. Drive car back 

to parking lot 

after trip is done

3. Take passenger 

to destination and 

come back

5. Turn 

car off

Leave the car 

running at the 

pickup area



Thread Pool

 Using threads is similar to the car service example (threads are like 
the cars).

 Creating and destroying threads is computationally expensive (just
like it takes a long time to start the car and drive it to the pickup
area, drive it back to the parking lot, and turn it off).

 Instead of always creating and destroying threads we can reuse them 
and leave them "running".

 A thread pool allows us to reuse threads.

 Using normal threads is like the first car service example.

 A thread pool is like the faster car service example.

© 2023 Arthur Hoskey. All 
rights reserved.



Executor and Thread Pools

 Java's Executor is a thread pool implementation.

 Executors allow you to run threads and asynchronous tasks but 
hide some details and operate more efficiently.

 Thread creation and destruction are computationally expensive. 

 A big advantage of using an Executor (a thread pool) is its 
threads can be easily reused. This will greatly enhance 
performance.
◦ Threads not destroyed - When a thread in the thread pool finishes it is not 

destroyed (it is kept around and reused by another task in the future)

◦ Minimal thread creation - When a thread is needed it does not have to be created 
(most of the time).

© 2023 Arthur Hoskey. All 
rights reserved.



Executors

 Executors were introduced in Java 8.

 Hides thread creation details.

 Link: 
https://winterbe.com/posts/2015/04/07/java8-
concurrency-tutorial-thread-executor-examples/

 The Executor manages a thread pool for us 
(hides thread creation details).

© 2023 Arthur Hoskey. All 
rights reserved.

https://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/
https://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/


Executors and ExecutorService

 Executors Class – The Executors class contains methods to create and 
manage an Executor instance. All methods on the Executors class are static.

 Executor Interface – Contains one method named execute that accepts a 
Runnable. When execute is called the Executor will assign the Runnable to an 
available thread in the thread pool (or create a new thread if necessary).

 ExecutorService Interface – Extends the Executor interface. It contains 
methods to manage the lifecycle of an Executor.

 The Exectutors class has methods to create instances of ExectutorService. 
Some example methods are:

◦ newSingleThreadExecutor() – Only one thread runs. The thread is reused.

◦ newFixedThreadPool() – Fixed number of threads that are always there. 
Threads are reused.

◦ newCachedThreadPool() – Reuses threads but those threads do not stay if 
they are unused (terminates and removes after a short period of time). No 
limit on the number of threads that can be created.

◦ and so on…

 Here is an example…

© 2023 Arthur Hoskey. All 
rights reserved.



Thread Example using Executors 
and ExecutorService

 The following code creates an instance of an ExecutorService and runs 
code on a thread within that ExecutorService:

ExecutorService exec = Executors.newSingleThreadExecutor();

exec.submit( () -> {

String tName = Thread.currentThread().getName();

System.out.printf("Message from %s\n", tName);

});

// Other code here…

exec.shutdown();

Create the ExectutorService

instance

Run code on a thread within the 

ExectuorService instance (the code in the { 

} will be run on another thread)

© 2023 Arthur Hoskey. All 
rights reserved.

Shutdown the ExecutorService when you are done using 

threads. Only do this when you are completely done with 

using threads. Creating and destroying it would mean 

creating and destroying lots of threads which defeats the 

purpose of using it in the first place.



Executor Starting a Runnable 
Class

 The example below runs an instance of a class that implements Runnable using the 
executor.

Class MyRunnable implements Runnable {

@Override

public void run() {

String tName = Thread.currentThread().getName();

System.out.printf("Message from %s\n", tName);

}

}

ExecutorService exec = Executors.newSingleThreadExecutor();

MyRunnable mr = new MyRunnable();

exec.submit(mr);

// Other code here…

// Eventually you should shutdown the executor.

exec.shutdown();

Create a class that 

implements Runnable

© 2023 Arthur Hoskey. All 
rights reserved.

Create a new instance of 

MyRunnable and run on the 

executor (submit will call run on mr)



Wait for Completion of Executor 
Threads

 To wait for completion of all threads you can call the awaitTermination
method on the Executor.

 For example (assume this code is in the main thread):

exec.shutdown();

try {

exec.awaitTermination(1, TimeUnit.MINUTES);

} catch (InterruptedException ex) {

Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);

}

 shutdown will not let the executor take on new tasks. The main thread 
will not block when shutdown is called. If you call awaitTermination (after 
shutdown) the main thread will wait for the executor to finish for the 
specified amount of time.

 shutdownNow also tries to stop the executor's running threads (as well 
as not taking on new tasks).

Wait one minute for 

running tasks to 

finish

© 2023 Arthur Hoskey. All 
rights reserved.

Stops executor from 

taking new tasks



Executor Shutdown Example

ExecutorService executor = Executors.newSingleThreadExecutor(); 

executor.submit( () -> { 

String threadName =

Thread.currentThread().getName(); System.out.println("Hello " +

threadName);

}); 

try { 

System.out.println("attempt to shutdown executor");

executor.shutdown(); 

executor.awaitTermination(5, TimeUnit.SECONDS);

} catch (InterruptedException e) { 

System.err.println("tasks interrupted"); 

} finally { 

if ( !executor.isTerminated() ) { 

System.err.println("cancel non-finished tasks"); 

} 

executor.shutdownNow();

System.out.println("shutdown finished"); 

}

Shutdown the executor 

and wait 5 seconds for 

all threads to finish

Run code on another thread 

(uses lambda expression)

© 2023 Arthur Hoskey. All 
rights reserved.

Stop the executor

Check if all threads finished. 

If threads are still running 

print an error message.



JavaFX GUI and ExecutorService
Shutdown

 You can define a clean up method in a controller class and have it called 
automatically when the current window is closing.

class MyController {

public void cleanup() {

System.out.println("cleanup called on MyController…");

// Code to run the ExecutorService shutdown goes here…

}

}

Replace the stage creation code in the start method as follows (in App.java):

FXMLLoader loader = new FXMLLoader(getClass().getResource("primary.fxml"));

Parent root = loader.load();

MyController myController = loader.getController();

Scene scene = new Scene(root);

stage = new Stage();

stage.setScene(scene);

stage.setOnHidden(e -> myController.cleanup());

stage.show();

© 2023 Arthur Hoskey. All 
rights reserved.

Add the controller's clean up 

method as an event handler for 

when the window is being hidden

Write a cleanup method in the 

controller class



Waiting on Multiple Threads to 
Finish - CountDownLatch

Waiting on Multiple Threads to Finish - CountDownLatch

 Wait until multiple threads have finished their work.

 Use a countdown latch to manage waiting on multiple threads.

 A countdown latch maintains a count which you will initialize to some value.

 When the count reaches 0 the countdown latch sends out a signal.

 CountDownLatch is thread safe.

 For example:

Main Thread Code

final CountDownLatch finishedSignal = new CountDownLatch(10);

// Create and run 10 threads here …

try {

finishedSignal.await();

} catch (InterruptedException ex) {

}

Thread code

// Do work in thread here…

finishedSignal.countDown();

© 2023 Arthur Hoskey. All 
rights reserved.

Main thread waits for the CountDownLatch

instance to reach 0. It will not move beyond 

await until the finishedSignal

CountDownLatch instance reaches 0.

Each thread calls the countDown method to 

decrement the CountDownLatch's counter 

when it is finished



JavaFX and Threads

 Now we will discuss using threads in a JavaFX 
application…

© 2023 Arthur Hoskey. All 
rights reserved.



Long Running Operation in GUI

 The main thread in a JavaFX application is responsible for all GUI controls.

 A JavaFX GUI becomes unresponsive if a long running operation takes 
place. 

 This means that if the user clicks any controls in the GUI, it will not 
respond.

© 2023 Arthur Hoskey. All 
rights reserved.

Main Window

Save

Name

Main Thread
Responsible for all GUI controls.

When this thread is performing a 
long running operation it cannot 

respond to any GUI events (GUI is 
unresponsive). 

Button will be 

unresponsive if a long 

running operation is 

taking place



Other Thread runs Long Operation

 A solution to the "hanging" GUI problem is to use other threads to 
perform long running operations (GUI will not hang).

 Unfortunately, this creates other problems because only the main GUI 
thread can update the controls in the window.

© 2023 Arthur Hoskey. All 
rights reserved.

Main Window

Save

Name

Main Thread
Responsible for all GUI controls.

Other Thread
CANNOT access GUI controls

Perform long running operation

The main thread creates 

another thread to perform the 

long running operation

The other thread may need to 

change values in the GUI 

controls, but it cannot 

because it does not have 

access to them



Update GUI from Other Thread

 The other thread can ask the main thread to 
update the GUI controls on its behalf.

 Use the Platform.runLater() method to update 
GUI controls from other threads.

Platform.runLater( () -> myTextField.setText("abc") );

 The Platform.runLater method takes a Runnable instance and 
passes it to the main thread.

 The main thread adds the Runnable instance to an event queue 
(it will run it at some point on the other thread's behalf).

 The call to runLater in the other thread does NOT block.

© 2023 Arthur Hoskey. All 
rights reserved.

Code to run on the main thread



End of Slides

 End of slides

© 2023 Arthur Hoskey. All 
rights reserved.


	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Running a Java Thread
	Slide 4: Implementing Runnable
	Slide 5: Extending Thread Class
	Slide 6: Anonymous Runnable
	Slide 7: Anonymous Runnable Using Lambda
	Slide 8: Pass Data to Thread
	Slide 9: Pass Data to Thread Using final Local Variables
	Slide 10: Join – Wait for another thread to finish
	Slide 11: Sleep
	Slide 12: Synchronized Method
	Slide 13: Synchronized Block
	Slide 14: Higher-level Thread Usage
	Slide 15: Car Service Example
	Slide 16: Faster Car Service Example
	Slide 17: Thread Pool
	Slide 18: Executor and Thread Pools
	Slide 19: Executors
	Slide 20: Executors and ExecutorService
	Slide 21: Thread Example using Executors and ExecutorService
	Slide 22: Executor Starting a Runnable Class
	Slide 23: Wait for Completion of Executor Threads
	Slide 24: Executor Shutdown Example
	Slide 25: JavaFX GUI and ExecutorService Shutdown
	Slide 26: Waiting on Multiple Threads to Finish - CountDownLatch
	Slide 27: JavaFX and Threads
	Slide 28: Long Running Operation in GUI
	Slide 29: Other Thread runs Long Operation
	Slide 30: Update GUI from Other Thread
	Slide 31: End of Slides

